ECE 172A: Introduction to Image Processing Image Processing Tasks: Part II

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

Outline

- Preprocessing
- **/**
 - Histogram
 - Normalization
 - Combining Images
 - Spatial Averaging
- Matching and Detection

- Correlation
- Matched Filtering
- Feature Extraction

- Contour/Edge Detection
- Segmentation
 - Variational Thresholding
 - Connected-Component Labeling

Image Segmentation

- Segmentation: Art or Science?
- Amplitude Thresholding
 - Variational Thresholding
 - Statistical Thresholding
- Binary Segmentation Techniques

What is Segmentation?

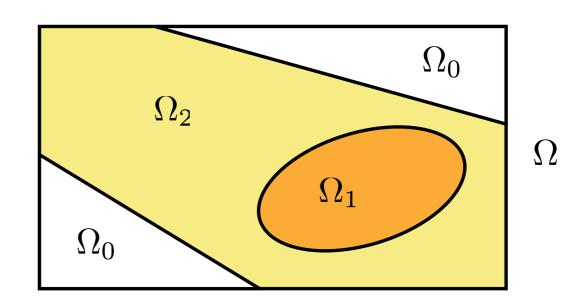
Definition

Image f[k], with $k \in \Omega$

Image segmentation: Find a partition of the support Ω of the image f, with

$$\Omega = \bigcup_i \Omega_i$$
 with $\Omega_i \cap \Omega_j = \emptyset$ for $i \neq j$

such that the regions Ω_i satisfy some homogeneity (and connectivity) criterion.



The total number of regions is not necessarily known

- Three main approaches (not based on deep learning)
 - Pixel classification
 - Region-based segmentation
 - Boundary-based segmentation \Rightarrow Edge detection

Segmentation: Art or Science?

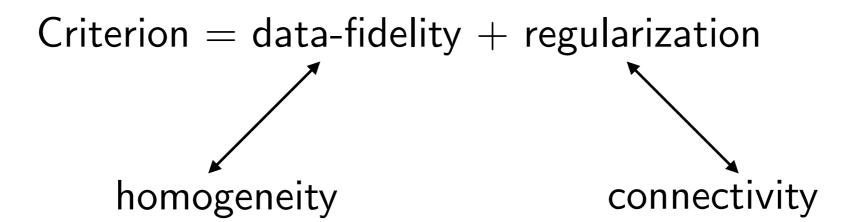
Problem: lack of a universal definition of homogeneity ⇒ many application-specific approaches

- Approaches for specifying homogeneity
 - Empirical (e.g., similar graylevels; feature maps)
 - Statistical, based on some a priori model (e.g., constant mean + additive white noise)
- Approaches for enforcing connectivity (if required)
 - Prior information about object size or shape
 - Joint probability model for class labels
 - Contour length

Segmentation as an Optimization Problem

Variational vs. Statistical Approaches

Principle: Maximize the quality of any candidate segmentation, as measured by a functional that incorporates all problem-specific knowledge



Amplitude Thresholding

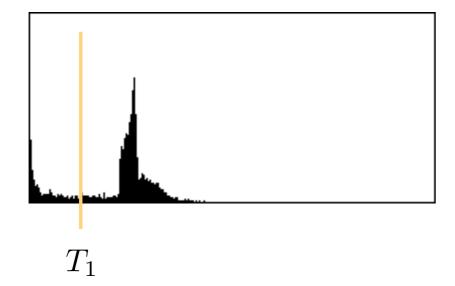
Empirical approach

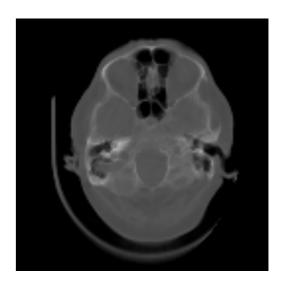
Based on the histogram, select a collection of thresholds

$$T_1 < \cdots < T_i < \cdots < T_I$$

and use the following rule to assign regions:

$$\mathbf{k} \in \Omega_i \text{ for } T_i \leq f[\mathbf{k}] \leq T_{i+1}$$





Variational Thresholding

Principle: Minimize an appropriate goodness-of-fit criterion

Variational formulation

Constant-mean model: $f[k] = \mu_i$, $k \in \Omega_i$

Find
$$\mu_i$$
 and Ω_i such that $\sum_i \sum_{{m k} \in \Omega_i} (f[{m k}] - \mu_i)^2$ is minimum

 \Rightarrow same problem as Llody–Max quantization (K-means)

Simple iterative two-step optimization scheme

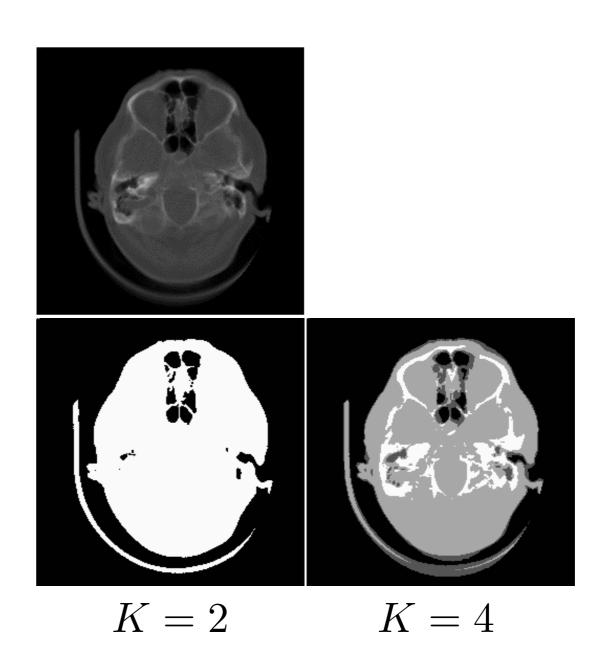
- 1. Given Ω_i , compute region means μ_i
- 2. Given μ_i , compute optimal partitions $\Omega_1, \ldots, \Omega_I$ $\Rightarrow T_{i+1} = \frac{1}{2}(\mu_i + \mu_{i+1})$

Note: all computations can be done from the histogram

Segmentation by Minimum-Error Quantization

Search for the "optimal" threshold values to segment images

Minimum mean squared error solutions:



Statistical Thresholding

Principle: Find the most "likely" segmentation model

Statistical formulation

For every pixel k, we have the label $\ell[k] = i \Leftrightarrow k \in \Omega_i$

f[k], $k \in \Omega$: pixel graylevels

Typical assumption:

Conditional density of a pixel graylevel given a segment label is Gaussian

$$p(f[\mathbf{k}] \mid \ell[\mathbf{k}] = i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(f[\mathbf{k}] - \mu_i)^2}{2\sigma^2}\right)$$

Parameters: $\sigma > 0$, $\mu_1, \ldots, \mu_K \in \mathbb{R}$

for all $k \in \Omega$

Under this statistical model, we want to find the most likely segmentation

Statistical Thresholding (cont'd)

Assume: each pixel graylevel is independent of all the others $f[\mathbf{k}_1]$ is independent of $f[\mathbf{k}_2]$ when $\mathbf{k}_1 \neq \mathbf{k}_2$

Collect: All pixel graylevels into one random vector ${m F}=\{f[{m k}]\}_{{m k}\in\Omega}$

Exercise: What is the density of F given $\{\ell[k]\}_{k\in\Omega}$?

$$p(\mathbf{F} \mid \{\ell[\mathbf{k}]\}_{\mathbf{k} \in \Omega}) \propto \prod_{\mathbf{k} \in \Omega} \exp\left(-\frac{(f[\mathbf{k}] - \mu_{\ell[\mathbf{k}]})^2}{2\sigma^2}\right)$$

Goal: Find parameters $\ell[k]$ and μ_1, \ldots, μ_K to maximize the "likelihood" of F

Find
$$\mu_i$$
 and $\ell[{\pmb k}]$ such that $\sum_i \sum_{{\pmb k} \in \Omega_i} (f[{\pmb k}] - \mu_i)^2$ is minimum

Equivalent to Lloyd–Max quantization!

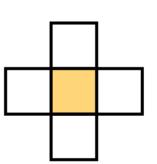
Binary-Segmentation Techniques

Objects or regions: Sets of points in \mathbb{Z}^2 (bitmap)

- Distances between $a, b \in \mathbb{Z}^2$
 - City-block distance: $D_4(a, b) = |a_1 b_1| + |a_2 b_2|$ ℓ^1 -distance: $||a b||_1$

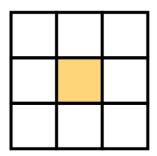
- Chessboard distance: $D_8(\boldsymbol{a}, \boldsymbol{b}) = \max\{|a_1 b_1|, |a_2 b_2|\}$ ℓ^{∞} -distance: $\|\boldsymbol{a} \boldsymbol{b}\|_{\infty}$
- Connectivity
 - 4-connected neighborhood

$$N_4(\boldsymbol{a}) = \{ \boldsymbol{b} \in \mathbb{Z}^2 : D_4(\boldsymbol{a}, \boldsymbol{b}) \le 1 \}$$



- 8-connected neighborhood

$$N_8(\mathbf{a}) = \{ \mathbf{b} \in \mathbb{Z}^2 : D_8(\mathbf{a}, \mathbf{b}) \le 1 \}$$



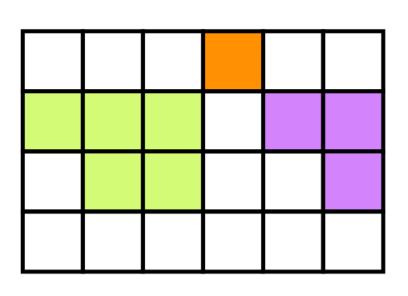
 $\mathbb{Z}^3 \Rightarrow 6$ -connected, 18-connected, or 26-connected neighborhoods

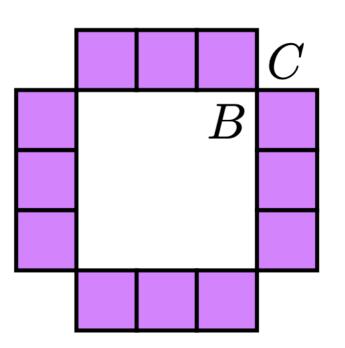
Binary-Segmentation Techniques (cont'd)

Objects or regions: Sets of points in \mathbb{Z}^2 (bitmap)

- Path
 - List $\{a_i: i=1,\ldots,M\}$ of M connected pixels such that $a_i \in N(a_{i-1})$

- Connected components
 - Maximal set of connected pixels

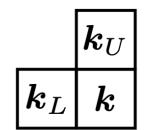




Connected-Component Labeling

Connected-component labeling (blob coloring) algorithm

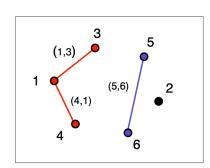
 \mathbb{F} : foreground $\mathbb{Z}^2 = \mathbb{F} \cup \mathbb{B}$; $\mathbb{F} \cap \mathbb{B} = \emptyset$ \mathbb{B} : background 4-connected scanning window \mathbb{E} : color equivalences



Initialize $\mathbb{E} = \emptyset$ and initial color i = 1

Scan image from left to right then top to bottom

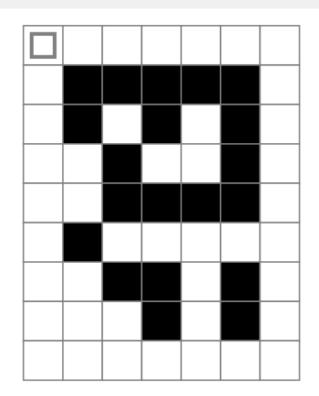
```
\begin{array}{l} \text{if } \boldsymbol{k} \in \mathbb{F} \text{ then } \{ \\ \text{if } (\boldsymbol{k}_U \in \mathbb{B} \wedge \boldsymbol{k}_L \in \mathbb{B}) \text{ then } \{ color(\boldsymbol{k}) = i; \ \mathbb{E} = \mathbb{E} \cup \{(i,i)\}; \ i = i+1; \} \\ \text{if } (\boldsymbol{k}_U \in \mathbb{F} \wedge \boldsymbol{k}_L \in \mathbb{B}) \text{ then } color(\boldsymbol{k}) = color(\boldsymbol{k}_U); \\ \text{if } (\boldsymbol{k}_U \in \mathbb{B} \wedge \boldsymbol{k}_L \in \mathbb{F}) \text{ then } color(\boldsymbol{k}) = color(\boldsymbol{k}_L); \\ \text{if } (\boldsymbol{k}_U \in \mathbb{F} \wedge \boldsymbol{k}_L \in \mathbb{F}) \text{ then } \{ \\ color(\boldsymbol{k}) = color(\boldsymbol{k}_L); \ \mathbb{E} = \mathbb{E} \cup \{(color(\boldsymbol{k}_U), color(\boldsymbol{k}_L))\}; \} \end{array}
```



Post-processing: Resolve color equivalences

e.g.,
$$\mathbb{E} = \{(1,1), (2,2), (3,3), (1,3), (4,4), (4,1), (5,5), (6,6), (5,6)\}$$

Connected-Component Labeling Exercise



white is background black is foreground

```
\begin{array}{l} \text{if } \boldsymbol{k} \in \mathbb{F} \text{ then } \{ \\ \text{if } (\boldsymbol{k}_U \in \mathbb{B} \wedge \boldsymbol{k}_L \in \mathbb{B}) \text{ then } \{ color(\boldsymbol{k}) = i; \ \mathbb{E} = \mathbb{E} \cup \{(i,i)\}; \ i = i+1; \} \\ \text{if } (\boldsymbol{k}_U \in \mathbb{F} \wedge \boldsymbol{k}_L \in \mathbb{B}) \text{ then } color(\boldsymbol{k}) = color(\boldsymbol{k}_U); \\ \text{if } (\boldsymbol{k}_U \in \mathbb{B} \wedge \boldsymbol{k}_L \in \mathbb{F}) \text{ then } color(\boldsymbol{k}) = color(\boldsymbol{k}_L); \\ \text{if } (\boldsymbol{k}_U \in \mathbb{F} \wedge \boldsymbol{k}_L \in \mathbb{F}) \text{ then } \{ \\ color(\boldsymbol{k}) = color(\boldsymbol{k}_L); \ \mathbb{E} = \mathbb{E} \cup \{(color(\boldsymbol{k}_U), color(\boldsymbol{k}_L))\}; \} \\ \} \end{array}
```

How many 4-connected components are there?